Measuring support for a hypothesis about a random parameter without estimating its unknown prior
نویسنده
چکیده
For frequentist settings in which parameter randomness represents variability rather than uncertainty, the ideal measure of the support for one hypothesis over another is the difference in the posterior and prior log odds. For situations in which the prior distribution cannot be accurately estimated, that ideal support may be replaced by another measure of support, which may be any predictor of the ideal support that, on a per-observation basis, is asymptotically unbiased. Two qualifying measures of support are defined. The first is minimax optimal with respect to the population and is equivalent to a particular Bayes factor. The second is worst-sample minimax optimal and is equivalent to the normalized maximum likelihood. It has been extended by likelihood weights for compatibility with more general models. One such model is that of two independent normal samples, the standard setting for gene expression microarray data analysis. Applying that model to proteomics data indicates that support computed from data for a single protein can closely approximate the estimated difference in posterior and prior odds that would be available with the data for 20 proteins. This suggests the applicability of random-parameter models to other situations in which the parameter distribution cannot be reliably estimated.
منابع مشابه
Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data
Introduction In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice, the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...
متن کاملComparison between Frequentist Test and Bayesian Test to Variance Normal in the Presence of Nuisance Parameter: One-sided and Two-sided Hypothesis
This article is concerned with the comparison P-value and Bayesian measure for the variance of Normal distribution with mean as nuisance paramete. Firstly, the P-value of null hypothesis is compared with the posterior probability when we used a fixed prior distribution and the sample size increases. In second stage the P-value is compared with the lower bound of posterior probability when the ...
متن کاملJoint Confidence Regions
Confidence intervals are one of the most important topics in mathematical statistics which are related to statistical hypothesis tests. In a confidence interval, the aim is that to find a random interval that coverage the unknown parameter with high probability. Confidence intervals and its different forms have been extensively discussed in standard statistical books. Since the most of stati...
متن کاملEstimating a Bounded Normal Mean Under the LINEX Loss Function
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...
متن کاملEmpirical Bayes Estimation of Reliability
Assessment of the reliability of various types of equipment relies on statistical inference about characteristics of reliability such as reliability function, mean lifetime of the devices, or failure rate. General techniques of statistical inference (estimation and hypotheses testing) are reviewed in Estimation; Least-Squares Estimation; Maximum Likelihood; Nonparametric Tests; Hypothesis Testi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010